Charge-Transfer Complexes in Organic Field-Effect Transistors: Superior Suitability for Surface Doping.

ACS applied materials & interfaces(2022)

引用 2|浏览16
暂无评分
摘要
We demonstrate the key role of charge-transfer complexes in surface doping as a successful methodology for improving channel field-effect mobility and reducing the threshold voltage in organic field-effect transistors (OFETs), as well as raising the film conductivity. Demonstrated here for 2,7-dioctyl[1]benzothieno[3,2-][1]benzothiophene (C-BTBT) doped with 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (FTCNNQ), channel doping by sequential deposition is consistently rationalized by the development of a cocrystalline structure that forms and evolves from the surface of the organic semiconductor film without trading the thin-film structure integrity. This scenario brings higher benefits for the device operation than doping by codeposition, where a decrease in the field-effect mobility of the device, even for a dopant content of only 1 mol %, makes codeposition less suitable. Insight into the structural and electronic properties of the interface satisfactorily explains the improved performance of OFETs upon the incorporation of the dopant and provides an understanding of the mechanism of doping in this system.
更多
查看译文
关键词
OFETs,charge-transfer complexes,cocrystals,doping,organic semiconductor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要