Fully automated measurement on coronal alignment of lower limbs using deep convolutional neural networks on radiographic images

Xianghong Meng,Zhi Wang,Xinlong Ma, Xiaoming Liu, Hong Ji,Jie-zhi Cheng, Pei Dong

BMC Musculoskeletal Disorders(2022)

引用 0|浏览20
暂无评分
摘要
Background A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parameters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limbs. Methods Standing X-rays of 1000 patients’ lower limbs were examined for the DCNN and assigned to training, validation, and test sets. A coarse-to-fine network was employed to locate 20 key landmarks on both limbs that first recognised the regions of hip, knee, and ankle, and subsequently outputted the key points in each sub-region from a full-length X-ray. Finally, information from these key landmark locations was used to calculate the above five parameters. Results The DCNN system showed high consistency (intraclass correlation coefficient > 0.91) for all five lower limb parameters. Additionally, the mean absolute error (MAE) and root mean squared error (RMSE) of all angle predictions were lower than 3° for both the left and right limbs. The MAE of the mechanical axis of the lower limbs was 1.124 mm and 1.416 mm and the RMSE was 1.032 mm and 1.321 mm, for the right and left limbs, respectively. The measurement time of the DCNN system was 1.8 ± 1.3 s, which was significantly shorter than that of experienced radiologists (616.8 ± 48.2 s, t = -180.4, P < 0.001). Conclusions The proposed DCNN system can automatically measure mLDFA, MPTA, LDTA, JLCA, and the mechanical axis of the lower limbs, thus helping physicians manage lower limb alignment accurately and efficiently.
更多
查看译文
关键词
Lower limbs, Full-length X-ray, Alignment measurement, Deep convolutional neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要