Observation of anisotropic Dirac cones in the topological material Ti2Te2P

arxiv(2022)

引用 4|浏览14
暂无评分
摘要
Anisotropic bulk Dirac (or Weyl) cones in three dimensional systems have recently gained intense research interest as they are examples of materials with tilted Dirac (or Weyl) cones indicatig the violation of Lorentz invariance. In contrast, the studies on anisotropic surface Dirac cones in topological materials which contribute to anisotropic carrier mobility have been limited. By employing angle-resolved photoemission spectroscopy and first-principles calculations, we reveal the anisotropic surface Dirac dispersion in a tetradymite material Ti2Te2P on the (001) plane of the Brillioun zone. We observe the quasi-elliptical Fermi pockets at the M -point of the Brillouin zone forming the anisotropic surface Dirac cones. Our calculations of the Z2 indices confirm that the system is topologically non-trivial with multiple topological phases in the same material. In addition, the observed nodal-line like feature formed by bulk bands makes this system topologically rich.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要