An Adaptive Time-Stepping Algorithm for the Allen-Cahn Equation

JOURNAL OF FUNCTION SPACES(2022)

引用 0|浏览0
暂无评分
摘要
In this paper, we present a simple and accurate adaptive time-stepping algorithm for the Allen-Cahn (AC) equation. The AC equation is a nonlinear partial differential equation, which was first proposed by Allen and Cahn for antiphase boundary motion and antiphase domain coarsening. The mathematical equation is a building block for modelling many interesting interfacial phenomena such as dendritic crystal growth, multiphase fluid flows, and motion by mean curvature. The proposed adaptive time-stepping algorithm is based on the Runge-Kutta-Fehlberg method, where the local truncation error is estimated by using fourth- and fifth-order numerical schemes. Computational experiments demonstrate that the proposed time-stepping technique is efficient in multiscale computations, i.e., both the fast and slow dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要