The Effect of Cu Additions on the Antibacterial Properties of Metallic Glassy Ni50TM50 (TM; Ti, Zr) Binary Systems

PROCESSES(2022)

引用 0|浏览3
暂无评分
摘要
Antibacterial agents derived from classic organic compounds have been frequently employed for a number of years as a protective layer for biofilms. On the other hand, these agents often comprise dangerous components that, due to their interaction with toxic compounds, may be damaging to human beings. This hazard may be caused by the agents' proximity to the toxic substances. Over the course of the past three decades, a variety of approaches, such as the utilization of a broad spectrum of metallic and oxide materials, have been the subject of research in order to develop a diverse selection of antibacterial coating layers that are acceptable. One of these approaches is the use of silver nanoparticles. It has been established that the cold spray technique, a solid-state method compatible with nanopowders, has shown higher performance and is the most effective strategy for coating materials. This has been proven via testing. It is possible to produce one-of-a-kind material coatings in ways that are not even remotely imaginable with any other thermal coating method, which is the primary reason for its prominence in contemporary production. The capacity to do so is what provides it with an advantage over its rivals in the market. This current study was conducted, in part, to investigate the effects of Cu-alloying elements on the antibacterial behavior of metallic glassy alloys on Ni50TM50 (TM; Ti, Zr) and Cu50TM40Ni10 (TM; Ti, Zr) systems prepared by the mechanical disordering technique, in conjunction with the cold spray method. These alloys were created by combining the mechanical disordering technique with the cold spray method. The arc melting process was employed to generate master alloys consisting of Ni50Ti50, Ni50Zr50, Cu50Ti40Ni10, and Cu50Zr40Ni10 for the purpose of this investigation. The master alloys were then used as feedstock materials for the creation of metallic glassy powders. Following the pulverization of the alloys of each system into a powdered form, the mixtures were charged through a high-energy ball milling operation for a duration of 50 h. Using the cold spray technique, the as-milled powders, which were metallic glasses, were applied singly in order to coat SUS304 sheets. The method was employed for this purpose. After the addition of Cu to the two binary Ni50TM50 (TM; Ti, Zr) alloys, the antibacterial properties of their corresponding metallic glassy phases were found to be significantly enhanced. This was shown by the fact that they were successful in preventing the development of biofilm by E. coli in contrast to the other systems that were evaluated.
更多
查看译文
关键词
Cu-based metallic glasses, high-energy ball milling, solid-state coating, thermal stability, biofilms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要