Giant spin-selective bandgap renormalization in CsPbBr3 colloidal nanocrystals

PHYSICAL REVIEW B(2022)

引用 2|浏览6
暂无评分
摘要
The spin-dependence of the strongly correlated phenomena and many-body interactions play an important role in quantum information science. In particular, it is quite interesting but unclear how the spin degree of freedom ramifies the bandgap renormalization, one of the fundamental many-body phenomena. We report the first room-temperature observation of giant spin-selective bandgap renormalization (SS-BGR) in CsPbBr3 colloidal nanocrystals using time-resolved circularly polarized femtosecond pump-probe spectroscopy. The SS-BGR results from many-body interactions among carriers with the same spin that renormalize their joint density of states by 57?? 1 meV, visualized here as photoinduced absorption (PIA) below band-edge transition energy when the pump and probe are co-polarized. The hallmark result of spectrally resolved SS-BGR is in stark contrast to the usually submerged signal in II-VI and III-V semiconductors and is 3 orders of magnitude larger than that observed in Ge/SiGe quantum wells, highlighting the unique and beneficial band structure of the metal-halide semiconductors. We propose that the PIA, due to SS-BGR, can be used to describe the spinpolarization and spin-relaxation dynamics. The experimental and theoretical findings open up new possibilities for optical manipulation of spin degrees of freedom and their many-body interactions in metal-halide perovskite nanocrystals for potential room-temperature applications.
更多
查看译文
关键词
spin-selective
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要