Enhanced Oxygen Evolution Reaction of Zr-Cu-Ni-Al Metallic Glass with an Oxide Layer in Alkaline Media

ACS CATALYSIS(2022)

引用 2|浏览1
暂无评分
摘要
This study elaborates on the tunability of Zr and O amounts in the ZrO2 layer of a melt-spun Zr65Cu17.5Ni10Al7.5 ribbon under cyclic polarization. The formation of an amorphous Zr-rich oxide layer facilitates the oxygen evolution reaction (OER) as confirmed by the decrease in the Tafel slope from 109 to 80 mV dec(-1) as well as conservation of its stability over 250 cycles and at long-term open circuit potential measurement, outperforming many of the precious and transition metal-based oxides and their composites. The evolution of additional binding energy at similar to 183.5 eV (Zr3d5 Zr-OH peak) indicates hydroxide ion insertion into the Zr-based metallic glass. The magnitude of impedance (cf. 625 omega cm(2) for as-spun vs 140 omega cm(2) for after-OER at 0.6 V and 100 Hz) and characteristic frequency (c.f. 80 degrees at 0.6 V for as-spun and 30 degrees at 0.9 V for after-OER) vs Ag/AgCl are relatively small for the post-OER electrode compared to the as-spun counterpart, corroborating enhanced kinetics of the post-OER electrode. Modifications in the oxide layer upon the OER yield an enormous increase in ion accumulation and electron transfer with a maximum true capacitance reaching similar to 0.0271 F cm(-2). Thus, a homogeneous combination of inexpensive Earth-abundant metals and an amorphous structure forms a highly active and stable oxide layer to be used for future renewable energy production materials.
更多
查看译文
关键词
oxygen evolution reaction, metallic glass, zirconium, electrochemistry, hydroxide ion, oxide layer, nanostructure, composition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要