96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems

NANOPHOTONICS(2022)

引用 7|浏览9
暂无评分
摘要
The multi-dimensional multiplexing technology is very promising for further increasing the link capacity of optical interconnects. A 96-channel silicon-based on-chip reconfigurable optical add-drop multiplexer (ROADM) is proposed and demonstrated for the first time to satisfy the demands in hybrid mode/polarization/wavelengthdivision-multiplexing systems. The present ROADM consists of a six-channel mode/polarization de-multiplexer, a 6 x 16 array of microring-resonator (MRR)-based wavelength-selective switches, and a six-channel mode/polarization multiplexer. With such a ROADM, one can add/drop optical signals to/from any channels of the multimode bus waveguide arbitrarily. For the designed and fabricated ROADM chip, there are more than 1000 elements integrated monolithically, including 96 MRRs, 576 waveguide crossings, 192 grating couplers, 96 micro-heaters, 112 pads, six polarization-splitter-rotators (PSRs), four asymmetric adiabatic couplers and four asymmetric directional couplers. For any channel added/dropped with the fabricated ROADM, the on-chip excess loss is about 5-20 dB, the inter-mode crosstalk is <-12 dB, and the inter-wavelength crosstalk is <-24 dB. The system experiments are demonstrated by using 10-GBaud quadrature phase shift keying (QPSK) signals, showing that the observed optical signal noise ratio (OSNR) power penalties induced by the ROADM are less than 2 dB at a BER of 3.8 x 10(-3).
更多
查看译文
关键词
add-drop, mode, multi-dimensional, multiplexing, silicon, wavelength
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要