Zinc isotope anomalies in primitive meteorites identify the outer solar system as an important source of Earth's volatile inventory

Icarus(2022)

引用 22|浏览5
暂无评分
摘要
The source of and timing of delivery of the volatile elements to Earth is a question that is fundamental to understanding how our planet evolved. Here, we show that primitive meteorites have resolved mass-independent Zn isotope anomalies from the terrestrial reservoir. Carbonaceous chondrites (CC), likely originating from the outer Solar System are distinct from non-CC, and Earth is intermediate between these two components. Modelling based on these data indicates that around 30% of Earth's budget of Zn and other moderately volatile material derives from the participation of 6% of CC-like materials during Earth's accretion, with the remaining coming from NC meteorites. This implies that, despite the relatively minor mass of Earth thought to derive from CC-like material, the CC component of Earth was relatively and significantly volatile-enriched; this is in line with the observation that the terrestrial elemental abundance pattern of moderately volatile elements could be explained by a carbonaceous source, and with the carbonaceous chondrite-like isotopic budget of more volatile-rich material accreted later in Earth's accretion history (e.g. Hg, Se, N, noble gases).
更多
查看译文
关键词
Meteorites,Cosmochemistry,Origin, solar system,Accretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要