High-dimensional orbital angular momentum entanglement from an ultrathin nonlinear film

FRONTIERS IN PHYSICS(2022)

引用 0|浏览3
暂无评分
摘要
Entanglement, as a crucial feature of quantum systems, is essential for various applications of quantum technologies. High-dimensional entanglement has the potential to encode arbitrary large amount of information and enhance robustness against eavesdropping and quantum cloning. The orbital angular momentum (OAM) entanglement can achieve the high-dimensional entanglement nearly for free stems due to its discrete and theoretically infinite-dimensional Hilbert space. A stringent limitation, however, is that the phase-matching condition limits the entanglement dimension because the coincidence rate decreases significantly for high-order modes. Here we demonstrate relatively flat high-dimensional OAM entanglement based on a spontaneous parametric down conversion (SPDC) from an ultrathin nonlinear lithium niobite crystal. The difference of coincidences between the different-order OAM modes significantly decreases. To further enhance the nonlinear process, this microscale SPDC source will provide a promising and integrated method to generate optimal high-dimensional OAM entanglement.
更多
查看译文
关键词
orbital angular momentum, quantum entanglement, high-dimensional entanglement, nonlinear film, phase matching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要