Putative transcription antiterminator RfaH contributes to Erwinia amylovora virulence

MOLECULAR PLANT PATHOLOGY(2022)

引用 2|浏览2
暂无评分
摘要
The gram-negative bacterium Erwinia amylovora causes fire blight disease of apple and pear trees. The exopolysaccharide amylovoran and lipopolysaccharides are essential E. amylovora virulence factors. Production of amylovoran and lipopolysaccharide is specified in part by genes that are members of long operons. Here, we show that full virulence of E. amylovora in apple fruitlets and tree shoots depends on the predicted transcription antiterminator RfaH. RfaH reduces pausing in the production of long transcripts having an operon polarity suppressor regulatory element within their promoter region. In E. amylovora, only the amylovoran operon and a lipopolysaccharide operon have such regulatory elements within their promoter regions and in the correct orientation. These operons showed dramatically increased polarity in the Delta rfaH mutant compared to the wild type as determined by RNA sequencing. Amylovoran and lipopolysaccharide production in vitro was reduced in rfaH mutants compared to the wild type, which probably contributes to the rfaH mutant virulence phenotype. Furthermore, type VI secretion cluster 1, which contributes to E. amylovora virulence, showed reduced expression in Delta rfaH compared to the wild type, although without an increase in polarity. The data suggest that E. amylovora RfaH directly, specifically, and exclusively suppresses operon polarity in the amylovoran operon and a lipopolysaccharide operon.
更多
查看译文
关键词
apple, fire blight, operon, pear, type VI secretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要