On-Orbit Autonomous Geometric Calibration of Directional Polarimetric Camera

REMOTE SENSING(2022)

引用 0|浏览3
暂无评分
摘要
The Directional Polarimetric Camera (DPC) carried by the Chinese GaoFen-5-02 (GF-5-02) satellite has the ability for multiangle, multispectral, and polarization detection and will play an important role in the inversion of atmospheric aerosol and cloud characteristics. To ensure the validity of the DPC on-orbit multiangle and multispectral polarization data, high-precision image registration and geolocation are vital. High-precision geometric model parameters are a prerequisite for on-orbit image registration and geolocation. Therefore, on the basis of the multiangle imaging characteristics of DPC, an on-orbit autonomous geometric calibration method without ground reference data is proposed. The method includes three steps: (1) preprocessing the original image of the DPC and the satellite attitude and orbit parameters; (2) scale-invariant feature transform (SIFT) algorithm to match homologous points between multiangle images; (3) optimization of geometric model parameters on-orbit using least square theory. To verify the effectiveness of the on-orbit autonomous geometric calibration method, the image registration performance and relative geolocation accuracy before and after DPC on-orbit geometric calibration were evaluated and analyzed using the SIFT algorithm and the coastline crossing method (CCM). The results show that the on-orbit autonomous geometric calibration effectively improves the DPC image registration and relative geolocation accuracy. After on-orbit calibration, the multiangle image registration accuracy is better than 1.530 km, the multispectral image registration accuracy is better than 0.650 km, and the relative geolocation accuracy is better than 1.275 km, all reaching the subpixel level (<1.7 km).
更多
查看译文
关键词
geometric calibration,directional polarimetric camera,geolocation accuracy,image registration,remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要