Efficient Tuning of Particle Accelerator Emittance via Bayesian Algorithm Execution and Virtual Objectives

arxiv(2022)

引用 0|浏览11
暂无评分
摘要
Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of $\textit{multi-point query}$, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose applying Bayesian Algorithm Execution (BAX) to instead query and model individual beam-size measurements. BAX avoids the slow multi-point query on the accelerator by acquiring points through a $\textit{virtual objective}$, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. Here, we use BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, BAX is 20$\times$ faster and more robust to noise compared to existing methods. In live LCLS and FACET-II tests, BAX performed the first automated emittance tuning, matching the hand-tuned emittance at FACET-II and achieving a 24% lower emittance at LCLS. Our method represents a conceptual shift for optimizing multi-point queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要