Seismic Performance and Engineering Application Investigation of a New Alternative Retainer

POLYMERS(2022)

引用 1|浏览1
暂无评分
摘要
Focusing on the dilemma that the traditional lateral shear keys are ineffectual in limiting the displacement and repair of small-to-medium spanning highway bridges, this paper briefly describes the necessity of considering fiber-reinforced polymer concrete with the shear keys design, and studies the seismic performance of an alternative retainer that focuses on three functions of "limiting displacement", "energy consumption", and "alternative link". In order to study the anti-seismic effectiveness under the seismic loads, four alternative retainer specimens with different sizes were designed. The quasi-static tests were carried out on four specimens, respectively. The seismic damage mode of the quasi-static alternative retainer was investigated. We examined the influence of the designed parameter of the alternative retainer on the anti-seismic effectiveness of the alternative retainer. Taking a two-span simply supported girder bridge, for example, the comparison between the seismic response of the bridge with retainers and without is analyzed based on a consideration of the sliding plate rubber bearings and the test results of the new retainers. The results show that the failure mode of the new alternative retainers is a two-stage process involving the alternative links: firstly shear failure and then the overall retainer damages, which is convenient to retrofit and reinforce post-earthquake. The thickness of the web of the alternative link, as a sensitive factor, influences the bearing capacity of the new retainers, yield displacement, ultimate displacement, ductility coefficient and overall energy consumption. The height of the alternative link will merely influence the ultimate bearing capacity, and transverse replacement of the main girder with the new alternative retainers is greatly reduced compared to without retainers, and the seismic response increase in the pier is gentle.
更多
查看译文
关键词
alternative, elastoplastic energy, retainer, fiber-reinforced polymer concrete
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要