Binding and inhibitory activities: A novel oral therapeutic agent for the treatment of hyperphosphataemia rats.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie(2022)

引用 0|浏览3
暂无评分
摘要
Novel oral therapeutic agents based on inhibition or binding activity without adverse events in CKD patients are urgently needed. Here, 5/6 nephrectomy (NX) rats were used to construct a CKD model. Aminated cellulose (AC711), which is metal-free, non-absorbable, and low-volume expansive, was used as a novel oral therapeutic agent for hyperphosphataemia treatment in rats. The efficacy of AC711 on serum and urinary phosphate levels, the expression of type II sodium-dependent phosphate cotransporter (NPT2b), and type III Na-dependent phosphate cotransporter (PiT-1/2) was examined. Serum fibroblast growth factor-23 (FGF-23) levels, parathyroid hormone (PTH) levels, and the phenotypic transformation of vascular smooth muscle cell markers (smooth muscle 22 (SM22) and Runx2) are considered an adaptive response to elevated serum phosphate levels. A similar efficacy of AC711 was observed on serum and urinary phosphate levels when the same dose of AC711 and sevelamer was administered to 5/6 NX rats. The decreasing expression of NPT2b, PiT-1, and PiT-2 was examined in the AC711 groups in a dose-dependent manner. The sevelamer and AC711-MD groups for FGF-23 and PTH indicated no significant difference. The down-regulation of Runx2 expression and up-regulation of SM22 expression were seen in the AC711 groups in a dose-dependent manner. Two suppression mechanisms (binding and inhibiting activities) were observed in the gastrointestinal (GI) tract in the AC711 groups. A novel oral phosphate binder, AC711, showed both binding and inhibition characteristics. The low-volume expansion of AC711 following exposure to simulated intestinal fluid provides the potential therapeutic benefits with the advantage of moderate GI side effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要