Mechanism of microbiologically induced calcite precipitation for cadmium mineralization

Science of The Total Environment(2022)

引用 10|浏览9
暂无评分
摘要
Microbiologically induced calcite precipitation (MICP) technology shows potential for remediating heavy metal pollution; however, the underlying mechanism of heavy metal mineralization is not well-understood, limiting the application of this technology. In this study, we targeted Cd contamination (using 15:1, 25:1, and 50:1 Ca2+/Cd2+ molar ratios) and showed that the ureolytic bacteria Sporosarcina ureilytica ML-2 removed >99.7 % Cd2+ with a maximum fixation capacity of 75.61 mg-Cd/g-CaCO3 and maximum precipitation production capacity of 135.99 mg-CaCO3/mg-cells. Quantitative PCR analysis showed that Cd2+ inhibited the expression of urease genes (ureC, ureE, ureF, and ureG) by 70 % in the ML-2 strain. Additionally, the pseudo-first-order kinetics model (R2 = 0.9886), intraparticle diffusion model (R2 = 0.9972), and Temkin isotherm model (R2 = 0.9828) described the immobilization process of Cd2+ by bio calcite in MICP-Cd system. The three Cd2+ mineralization products generated by MICP were attributed to surface precipitation (Cd2+ → Cd(OH)2), direct binding with the CO32−/substitution calcium site of calcite (Cd2+ → CdCO3, otavite), and calcite lattice vacancy anchors (Cd2+ → (CaxCd1-x)CO3). Our findings improve the understanding of the mechanisms by which MICP can achieve in situ stabilization of heavy metals.
更多
查看译文
关键词
Cd,MICP,Molar ratio,Urease gene,Mineralized species,Adsorption model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要