Constrained Riemannian Noncoherent Constellations for the MIMO Multiple Access Channel

arxiv(2022)

引用 0|浏览9
暂无评分
摘要
We consider the design of multiuser constellations for a multiple access channel (MAC) with K users, with M antennas each, that transmit simultaneously to a receiver equipped with N antennas through a Rayleigh block-fading channel, when no channel state information (CSI) is available to either the transmitter or the receiver. In full-diversity scenarios where the coherence time is at least T>= (K+1)M, the proposed constellation design criterion is based on the asymptotic expression of the multiuser pairwise error probability (PEP) derived by Brehler and Varanasi. In non-full diversity scenarios, for which the previous PEP expression is no longer valid, the proposed design criteria are based on proxies of the PEP recently proposed by Ngo and Yang. Although both the PEP expression and its bounds or proxies were previously considered intractable for optimization, in this work we derive their respective unconstrained gradients. These gradients are in turn used in the optimization of the proposed cost functions in different Riemannian manifolds representing different power constraints. In particular, in addition to the standard unitary space-time modulation (USTM) leading to optimization on the Grassmann manifold, we consider a more relaxed per-codeword power constraint leading to optimization on the so-called oblique manifold, and an average power constraint leading to optimization on the so-called trace manifold. Equipped with these theoretical tools, we design multiuser constellations for the MIMO MAC in full-diversity and non-full-diversity scenarios with state-of-the-art performance in terms of symbol error rate (SER).
更多
查看译文
关键词
mimo multiple access channel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要