Exploring traditional machine learning for identification of pathological auscultations

arxiv(2022)

引用 0|浏览9
暂无评分
摘要
Today, data collection has improved in various areas, and the medical domain is no exception. Auscultation, as an important diagnostic technique for physicians, due to the progress and availability of digital stethoscopes, lends itself well to applications of machine learning. Due to the large number of auscultations performed, the availability of data opens up an opportunity for more effective analysis of sounds where prognostic accuracy even among experts remains low. In this study, digital 6-channel auscultations of 45 patients were used in various machine learning scenarios, with the aim of distinguishing between normal and anomalous pulmonary sounds. Audio features (such as fundamental frequencies F0-4, loudness, HNR, DFA, as well as descriptive statistics of log energy, RMS and MFCC) were extracted using the Python library Surfboard. Windowing and feature aggregation and concatenation strategies were used to prepare data for tree-based ensemble models in unsupervised (fair-cut forest) and supervised (random forest) machine learning settings. The evaluation was carried out using 9-fold stratified cross-validation repeated 30 times. Decision fusion by averaging outputs for a subject was tested and found to be useful. Supervised models showed a consistent advantage over unsupervised ones, achieving mean AUC ROC of 0.691 (accuracy 71.11%, Kappa 0.416, F1-score 0.771) in side-based detection and mean AUC ROC of 0.721 (accuracy 68.89%, Kappa 0.371, F1-score 0.650) in patient-based detection.
更多
查看译文
关键词
machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要