Design Automation for a Fully Printed P(VDF-TrFE) Transducer

2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF)(2022)

引用 2|浏览2
暂无评分
摘要
Ultrasound transducers can be modelled from scratch in software. Simulations employ these models to investigate the influences of materials and shapes of transducer structures on the resonance behaviour. However, there is a lack of publicly available code implementations for such models. In addition, printed transducers place special demands on the design. For example, printing processes always require substrate materials that can affect resonances. To support rapid prototyping, we provided an equivalent circuit model based on the model suggested by Mason. We employed transmission line theory to account for impedance loads from auxiliary structures (e.g. electrodes or substrate). We evaluated our model on 6 printed transducer samples and found mean differences in resonant frequencies of 3.63±2.5MHz. Moreover, we demonstrated the usage of this model in the design process of printed transducers. We made all our code available as open-source software via: https://github.com/luuleitner/xMason.
更多
查看译文
关键词
Rapid Prototyping,Piezoelectric,Screen Printing,Inkjet Printing,Mason Model,Transmission Line Theory,Acoustic,Electric,Impedance.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要