Robust covalent pyrazine anchors forming highly conductive and polarity-tunable molecular junctions with carbon electrodes

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2022)

引用 1|浏览15
暂无评分
摘要
In molecular electronics, electrode-molecule anchoring strategies play a crucial role in the design of stable and high-performance functional single-molecule devices. Herein, we employ aromatic pyrazine as anchors to connect a central anthracene molecule to carbon electrodes including graphene and armchair single-walled carbon nanotubes (SWCNTs), and theoretically investigate their atomic structures and electronic transport properties. These molecular junctions can be constructed via condensation reactions of the central molecules terminated with ortho-phenylenediamines with ortho-quinone-functionalized nanogaps of graphene and SWCNT electrodes. With two direct C-N covalent bonds connecting the central molecule site-selectively to carbon electrodes in a coplanar way, pyrazine anchors are advantageous for forming stable and structurally well-defined molecular junctions, being expected to reduce the uncertainty about the electrode-molecule linkage motifs. The junction transport is highly efficient due to the coplanar geometry and the ensuing strong pi-type molecule-electrode electronic coupling. Furthermore, our calculations show that molecular junctions with pyrazine anchors and carbon electrodes are usually n-type electronic devices; upon hydrogenation of pyridinic nitrogen atoms, the device polarity can be tuned to p-type, indicating that the pyrazine anchors can also serve as a powerful platform for tailoring in situ the polarity of charge carriers in carbon-electrode molecular electronic devices.
更多
查看译文
关键词
robust covalent pyrazine anchors,electrodes,polarity-tunable
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要