Introgression of a novel gene AhBINR differentially expressed during PGPR Brachybacterium saurashtrense-Arachis hypogaea interaction enhances plant performance under nitrogen starvation and salt stress in tobacco

Plant Science(2022)

引用 2|浏览1
暂无评分
摘要
Plant growth-promoting rhizobacteria provide endurance during environmental stress conditions. Previously, we have shown that the interaction of the halotolerant diazotrophic bacteria Brachybacterium saurashtrense JG06 induces physio-biochemical and molecular changes in Arachis hypogaea under nitrogen starvation conditions. Here we deciphered the role of a novel gene AhBINR that was differentially overexpressed in A. hypogaea after interaction with B. saurashtrense JG06 under nitrogen deficit conditions. Overexpression of the AhBINR gene in the model plant (tobacco) showed higher growth parameters (root length, shoot length, fresh weight, and dry weight) under nitrogen starvation and salt stress in comparison to the wild type and vector control. Transgenic plants were enabled with a higher photosynthesis rate, which provides the support for better performance under N2 starvation and salt stress. Results showed that the transgenic plants overexpressing the AhBINR gene had better physiological status and lower ROS accumulation under adverse conditions. Microarray transcriptome analysis showed that the transcription factors, biotic and abiotic stress, photosynthesis, and metabolism-related genes were differentially expressed (total 736 and 6530 genes were expressed under nitrogen deficit and salt stress conditions, respectively at a 5-fold change level) in comparison to wild type plants. Overall results showed the involvement of the AhBINR gene in the activation of the abiotic stress (nitrogen starvation and salt stress) related pathways, which can be overexpressed after legume-rhizobacterial interaction.
更多
查看译文
关键词
Legume-microbe interaction,Nitrogen deficit,Salt stress,Novel gene,Transgenic,Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要