Upregulation of CXCL1 and LY9 contributes to BRCAness in ovarian cancer and mediates response to PARPi and immune checkpoint blockade

British Journal of Cancer(2022)

引用 2|浏览6
暂无评分
摘要
Background Mutations in BRCA1 or BRCA2 ( BRCA1/2 ) cause homologous recombination deficiency (HRD). Ovarian cancer (OvCa) patients harbouring HRD beyond BRCA1/2 mutation result in a state referred to as “BRCAness”. OvCa with BRCAness could benefit from PARP inhibitors. This study aims to identify a signature to detect the BRCAness population at the transcriptome level. Methods We used a rank-based algorithm to develop a qualitative BRCAness signature for OvCa. Upregulation of CXCL1 with downregulation of SV2A and upregulation of LY9 with downregulation of CHRNB3 were constructed as the BRCAness signature (2 gene pairs, 2-GPS) for OvCa. Results OvCa samples that were classified as BRCAness by 2-GPS showed improved overall survival, progression-free survival and exhibited increased multi-omics alterations in homologous recombination genes and enhanced sensitivity to immune checkpoint blockade. BRCAness cells were sensitive to PARP inhibitors. By biological experiments, we validated SKOV3 cells and patients with HRD exhibited higher expression of CXCL1 than SV2A and higher expression of LY9 than CHRNB3 at mRNA level. Both SKOV3 and A2780 with HRD were sensitive to mitomycin C, cisplatin and olaparib. Conclusions In conclusion, 2-GPS could robustly predict BRCAness OvCa at the individual level and extend the population who may benefit from PARP inhibitors.
更多
查看译文
关键词
Cancer therapy,Classification and taxonomy,Tumour immunology,Biomedicine,general,Cancer Research,Epidemiology,Molecular Medicine,Oncology,Drug Resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要