mu-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype Na(V)1.7

Toxins(2022)

引用 2|浏览13
暂无评分
摘要
mu-Conotoxins are small, potent, peptide voltage-gated sodium (Na-V) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype Na(V)1.7 has so far been limited. We recently identified a novel mu-conotoxin, SxIIIC, which potently inhibits human Na(V)1.7 (hNa(V)1.7). SxIIIC has high sequence homology with other mu-conotoxins, including SmIIIA and KIIIA, yet shows different Na-V channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of mu-conotoxins SxIIIC, SmIIIA and KIIIA at hNa(V) channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related mu-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNa(V)1.7. Analysis of other mu-conotoxins at hNa(V)1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of mu-conotoxins to inhibit hNa(V)1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNa(V)1.4. Comparison of mu-conotoxin NMR solution structures identified differences that may contribute to the variance in hNa(V)1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNa(V)1.7, when compared to KIIIA. This work could assist in designing mu-conotoxin derivatives specific for hNa(V)1.7.
更多
查看译文
关键词
mu-conotoxins, voltage-gated sodium channels, structure-activity relationships, disulfide-rich peptides, Cys frameworks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要