Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion.

Trends in cell biology(2022)

引用 5|浏览7
暂无评分
摘要
Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.
更多
查看译文
关键词
actin cytoskeleton,cortical tension,integrin adhesion,mechanical forces,molecular sensors,super-resolution microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要