Exploring Nanoscale Structure in Perovskite Precursor Solutions Using Neutron and Light Scattering

CHEMISTRY OF MATERIALS(2022)

引用 8|浏览23
暂无评分
摘要
Tailoring the solution chemistry of metal halide perovskites requires a detailed understanding of precursor aggregation and coordination. In this work, we use various scattering techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), and spin-echo SANS (SESANS) to probe the nanostructures from 1 nm to 10 mu m within two different lead-halide perovskite solution inks (MAPbI(3) and a triplecation mixed-halide perovskite). We find that DLS can misrepresent the size distribution of the colloidal dispersion and use SANS/SESANS to confirm that these perovskite solutions are mostly comprised of 1-2 nm-sized particles. We further conclude that if there are larger colloids present, their concentration must be <0.005% of the total dispersion volume. With SANS, we apply a simple fitting model for two component microemulsions (Teubner-Strey), demonstrating this as a potential method to investigate the structure, chemical composition, and colloidal stability of perovskite solutions, and we here show that MAPbI(3) solutions age more drastically than triple cation solutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要