Toluidine blue O attenuates tau phosphorylation in N2a-APPSwe cells.

Chemico-biological interactions(2022)

引用 0|浏览0
暂无评分
摘要
Alzheimer's disease (AD) is characterized by extracellular amyloid plaques composed of amyloid-β peptide (Aβ), intracellular neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. Most of the FDA-approved AD drugs currently on the market are cholinesterase inhibitors, which are only effective in relieving the symptoms of AD. However, recent studies in AD drug discovery focus on multi-targeted strategies, including anti-amyloid and anti-tau therapy. In the current study, we have investigated the effects of toluidine blue O (TBO), a cholinesterase inhibitor, on amyloid precursor protein (APP) processing, tau phosphorylation, and tau kinases/phosphatase in N2a mouse neuroblastoma cells stably expressing the Swedish mutation of human APP695 (N2a-APPSwe). The results demonstrated that TBO reduces Aβ40/42 levels by decreasing expression levels of β-secretase 1 (BACE1), presenilin 1 (PS1) and total APP without causing cytotoxic effects in N2a-APPSwe cells. TBO also decreased the levels of both total tau and phosphorylated tau at residues Ser202/Thr205, Thr181, Ser396 and Ser 396/Ser404. Moreover, when the possible mechanisms underlying its effects on tau pathology were explored, TBO was found to decrease tau phosphorylation at those sites by reducing the expression levels of Akt, GSK-3β, Cdk5, inactive p-PP2A and increasing the expression levels of p-Akt Ser473 and inactive p-GSK-3β Ser9. Our new data support the idea that TBO may be a promising multi-target drug candidate for the treatment of AD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要