Integrated Guidance and Gimbal Control for Coverage Planning With Visibility Constraints

IEEE Transactions on Aerospace and Electronic Systems(2023)

引用 4|浏览1
暂无评分
摘要
Coverage path planning with unmanned aerial vehicles (UAVs) is a core task for many services and applications including search and rescue, precision agriculture, infrastructure inspection and surveillance. This work proposes an integrated guidance and gimbal control coverage path planning (CPP) approach, in which the mobility and gimbal inputs of an autonomous UAV agent are jointly controlled and optimized to achieve full coverage of a given object of interest, according to a specified set of optimality criteria. The proposed approach uses a set of visibility constraints to integrate the physical behavior of sensor signals (i.e., camera-rays) into the coverage planning process, thus generating optimized coverage trajectories that take into account which parts of the scene are visible through the agent's camera at any point in time. The integrated guidance and gimbal control CPP problem is posed in this work as a constrained optimal control problem which is then solved using mixed integer programming (MIP) optimization. Extensive numerical experiments demonstrate the effectiveness of the proposed approach.
更多
查看译文
关键词
Sensors,Planning,Robot sensing systems,Path planning,Trajectory,Robots,Autonomous aerial vehicles,Autonomous agents,coverage planning,guidance and control,trajectory planning,unmanned aerial vehicles (UAVs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要