Cardiac efficiency and Starling's Law of the Heart

JOURNAL OF PHYSIOLOGY-LONDON(2022)

引用 3|浏览7
暂无评分
摘要
The formulation by Starling of The Law of the Heart states that 'the [mechanical] energy of contraction, however measured, is a function of the length of the muscle fibre'. Starling later also stated that 'the oxygen consumption of the isolated heart. is determined by its diastolic volume, and therefore by the initial length of its muscular fibres'. This phrasing has motivated us to extend Starling's Law of the Heart to include consideration of the efficiency of contraction. In this study, we assessed both mechanical efficiency and crossbridge efficiency by studying the heat output of isolated rat ventricular trabeculae performing force-length work-loops over ranges of preload and afterload. The combination of preload and afterload allowed us, using our modelling frameworks for the end-systolic zone and the heat-force zone, to simulate cases by recreating physiologically feasible loading conditions. We found that across all cases examined, both work output and change of enthalpy increased with initial muscle length; hence it can only be that the former increases more than the latter to yield increased mechanical efficiency. In contrast, crossbridge efficiency increased with initial muscle length in cases where the extent of muscle shortening varied greatly with preload. We conclude that the efficiency of cardiac contraction increases with increasing initial muscle length and preload. An implication of our conclusion is that the length-dependent activation mechanism underlying the cellular basis of Starling's Law of the Heart is an energetically favourable process that increases the efficiency of cardiac contraction.
更多
查看译文
关键词
cardiac energetics, force-length relation, Frank-Starling mechanism, mechanical efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要