Electron attachment to fluorodeoxyglucose: Dissociation dynamics in a molecule of near-zero electron affinity

JOURNAL OF CHEMICAL PHYSICS(2022)

引用 1|浏览24
暂无评分
摘要
Fluorodeoxyglucose (FDG) is a glucose derivative with fluorine at the C-2 position. The molecule containing the radioactive F-18 isotope is well known from its application in positron emission tomography as a radiotracer in tumor examination. In the stable form with the F-19 isotope, FDG was proposed as a potential radiosensitizer. Since reduction processes may be relevant in radiosensitization, we investigated low-energy electron attachment to FDG with a crossed electron-molecule beam experiment and with quantum chemical calculations as well as molecular dynamics at elevated temperatures to reveal statistical dissociation. We experimentally find that the susceptibility of FDG to low-energy electrons is relatively low. The calculations indicate that upon attachment of an electron with a kinetic energy of similar to 0 eV, only dipole-bound states are accessible, which agrees with the weak ion yields observed in the experiment. The temporary negative ions formed upon electron attachment to FDG may decay by a large variety of dissociation reactions. The major fragmentation channels include H2O, HF, and H-2 dissociation, accompanied by ring opening. (C) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要