Determining the position of a fish passage facility entrance based on endemic fish swimming abilities and flow field.

Environmental science and pollution research international(2022)

引用 3|浏览6
暂无评分
摘要
Hydropower development can significantly mitigate climate change and reduce carbon emissions, but it can also have substantial negative impacts on river environments and fish biodiversity. Fish passage facilities are built to ensure sustainable hydropower development and the biodiversity of fish populations. The locations of the entrances to these facilities play a key role in their efficiency. This study presents a reliable approach that combines the swimming ability of fish and a numerical flow field simulation to determine the optimal location for a fish passage facility entrance. In this study, we used the Gujun Reservoir upstream of the Yangtze River as a case study. A field experiment was conducted, and the swimming abilities of eight endemic fish species in the upstream region of the Yangtze River were measured. Among the tested species, the fastest induced swimming speed (0.14 m/s) was achieved by Glyptothorax sinense, while the slowest critical swimming speed (0.30 m/s) was observed for Paracobitis potanini. We propose that the velocity near the fish passage facility entrance should be higher than the maximum induced swimming speed and lower than the minimum critical swimming speed, making the suitable range between 0.14 and 0.30 m/s. On this basis, velocity fields 500 m downstream of the dam of the Gujun Reservoir under 4 operating conditions with discharge flows of 5.7 m3/s, 23.3 m3/s, 32.5 m3/s, and 41.1 m3/s were calculated. The results showed that the flow field variation downstream of the dam was between 0.1 and 0.9 m/s. After comparing the suitable areas for the target species, the left bank at location 2 was recommended as the optimal location for the fish passage facility entrance in the Gujun Reservoir.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要