Associations of forest negative air ions exposure with cardiac autonomic nervous function and the related metabolic linkages: A repeated-measure panel study

Science of The Total Environment(2022)

引用 5|浏览17
暂无评分
摘要
Forest environment has many health benefits, and negative air ions (NAI) is one of the major forest environmental factors. Many studies have explored the effect of forest environment on cardiac autonomic nervous function, while forest NAI in the among function and the underlying mechanism still remain unclear. To explore the associations and molecular linkages between short-term exposure to forest NAI and heart rate variability (HRV), a repeated-measure panel study was conducted among 31 healthy adults. Participants were randomly selected to stay in a forest park for 3 days and 2 nights. Individual exposures including NAI were monitored simultaneously and HRV indices were measured repeatedly at the follow-up period. Urine samples were collected for non-targeted metabolomics analysis. Mixed-effect models were adopted to evaluate associations among NAI, HRV indices and metabolites. The median of NAI concentration was 68.11 (138.20) cm−3 during the study period. Short-term exposure to forest NAI was associated with the ameliorative HRV indices, especially the excitatory parasympathetic nerve. For instance, per interquartile range increase of 5-min moving average of NAI was associated with 9.99 % (95%CI: 8.95 %, 11.03 %) increase of power in high frequency. Eight metabolites were associated with NAI exposure. The down-regulated tyrosine metabolism was firstly observed, followed by other amino acid metabolic alterations. The NAI-related metabolic changes reflect the reduction of inflammation and oxidative stress. HRV indices were associated with 25 metabolites, mainly including arginine, proline and histidine metabolism. Short-term exposure to forest NAI is beneficial to HRV, especially to the parasympathetic nerve activity, by successively disturbing different metabolic pathways which mainly reflect the increased anti-inflammation and the reduced inflammation. The results will provide epidemiological evidences for developing forest therapy and improving cardiac autonomic nervous function.
更多
查看译文
关键词
Forest environment,Negative air ion,Heart rate variability,Parasympathetic activity,Metabolomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要