Association of rare variants in genes of immune regulation with pediatric autoimmune CNS diseases

Journal of Neurology(2022)

引用 0|浏览6
暂无评分
摘要
Background There is a gap in the literature regarding genetic underpinnings of pediatric autoimmune CNS diseases. This study explored rare gene variants implicated in immune dysregulation within these disorders. Methods This was a single-center observational study of children with inflammatory CNS disorder who had genetic testing through next generation focused exome sequencing targeting 155 genes associated with innate or adaptive immunity. For in silico prediction of functional effects of single-nucleotide variants, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant were used, and Combined Annotation Dependent Depletion (CADD) scores were calculated. Identified genes were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Of 54 patients, 42 (77.8%) carried variant(s), among which 12 (22.2%) had 3–8 variants. Eighty-eight unique single-nucleotide variants of 55 genes were identified. The most variants were detected in UNC13D, LRBA, LYST, NOD2, DOCK8, RNASEH2A, STAT5B, and AIRE . The majority of variants (62, 70.4%) had CADD > 10. KEGG pathway analysis revealed seven genes associated with primary immunodeficiency (Benjamini 1.40 E − 06), six genes with NOD-like receptor signaling (Benjamini 4.10 E − 04), five genes with Inflammatory Bowel Disease (Benjamini 9.80 E − 03), and five genes with NF-kappa B signaling pathway (Benjamini 1.90 E − 02). Discussion We observed a high rate of identification of rare and low-frequency variants in immune regulatory genes in pediatric neuroinflammatory CNS disorders. We identified 88 unique single-nucleotide variants of 55 genes with pathway analysis revealing an enrichment of NOD2-receptor signaling, consistent with involvement of the pathway within other autoinflammatory conditions and warranting further investigation.
更多
查看译文
关键词
Autoimmune,Neuroinflammatory,Demyelinating,Genetics,Variants of unknown significance,Next-generation sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要