Time-restricted feeding rescues circadian disruption- aggravated progression of Alzheimer's disease in diabetic mice.

The Journal of nutritional biochemistry(2022)

引用 1|浏览4
暂无评分
摘要
Circadian rhythms, type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are closely related and interacted with each other. We have previously showed circadian disruption aggravated progression of AD in T2DM mice. Time-restricted feeding (TRF) is shown to be a potential synchronizer. This study aims to determine whether TRF has a protect effect against the circadian disruption-aggravated progression of AD in T2DM. Six-week-old male diabetic (db/db) mice and wildtype (wt/wt) mice were kept under normal 12:12 light/dark cycles or altered 6:18 light/dark cycles (dark extended to 18 hours) with or without TRF (food restricted to 8 hours during the active (dark) period). After eight weeks, three behavioral tests (open field test, novel object recognition test, barnes maze test) were performed and the circadian gene expression, body weight, lipid levels and AD-associated tau phosphorylation were evaluated. We found altered light/dark cycles contributed to disruptive circadian rhythms in the hippocampus of db/db mice, while TRF prevented this effect. TRF also ameliorated circadian disruption-aggravated increased body weight and lipid accumulation in db/db mice. Importantly, the db/db mice under circadian disruption showed impaired cognition accompanied by increased tau phosphorylation, whereas TRF reversed these changes. The altered light/dark cycles only affected circadian rhythms but not other indicators like plasma/liver lipids, cognition and tau phosphorylation in the wt/wt mice. Collectively, TRF has a protective effect against altered light/dark cycles-aggravated AD progression in diabetic mice.
更多
查看译文
关键词
Alzheimer's disease,Circadian rhythms,Light,Time-restricted feeding,Type 2 diabetes mellitus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要