Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study

NANOTECHNOLOGY(2022)

引用 3|浏览3
暂无评分
摘要
In this paper, an ultrascaled ballistic graphene nanoribbon field-effect transistor (GNRFET) endowed with a compound double-gate based on metal-ferroelectric-metal (MFM) structure is proposed to overcome the limitations encountered with its conventional counterpart. The ballistic transistor is computationally investigated by solving self-consistently the non-equilibrium Green's function formalism and the Poisson solver in conjunction with the Landau-Khalatnikov equation. The numerical investigation has included the ferroelectric-induced amplified internal metal voltage, the role of the ferroelectric thickness in boosting the device performance, the assessment of the switching and subthreshold performance, and the analysis of the FE-GNRFET scaling capability. The simulations revealed that the MFM-based gate can significantly boost the performance of GNRFETs, including the switching behavior, the on-current, the off-current, the current ratio, the swing factor, the intrinsic delay, and the scaling capability. More importantly, the proposed MFM GNRFET was found able to provide sub-thermionic subthreshold swing even with sub-10 nm gate lengths, which is very promising for low-power applications. The obtained results indicate that the MFM-based gating approach can give new impulses to the GNRFET technology.
更多
查看译文
关键词
graphene nanoribbon (GNR), field-effect transistors (FETs), metal-ferroelectric-metal-insulator-semiconductor (MFMIS), negative capacitance (NC), subthreshold swing (SS), quantum simulation, switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要