The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell

COATINGS(2022)

引用 3|浏览5
暂无评分
摘要
In dentistry, bone regeneration requires osteoinductive biomaterial with antibacterial properties. Polycaprolactone (PCL) may be combined with different nanofillers including reduced graphene oxide (rGO). Here, the amount of rGO filler was defined to obtain a biocompatible and antibacterial PCL-based surface supporting the adhesion and differentiation of human mesenchymal stem cells (MSCs). Compounds carrying three different percentages of rGO were tested. Among all, the 5% rGO-PCL compound is the most bacteriostatic against Gram-positive bacteria. All scaffolds are biocompatible. MSCs adhere and proliferate on all scaffolds; however, 5% rGO-PCL surface supports the growth of cells and implements the expression of extracellular matrix components necessary to anchor the cells to the surface itself. Moreover, the 5% rGO-PCL surface has superior osteoinductive properties confirmed by the improved alkaline phosphatase activity, mineral matrix deposition, and osteogenic markers expression. These results suggest that 5% rGO-PCL has useful properties for bone tissue engineering purposes.
更多
查看译文
关键词
graphene, polycaprolactone, antimicrobial surfaces, mesenchymal stem cell, adhesion, differentiation, bone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要