Hybrid LSTM-ARMA Demand-Forecasting Model Based on Error Compensation for Integrated Circuit Tray Manufacturing

MATHEMATICS(2022)

引用 6|浏览5
暂无评分
摘要
Demand forecasting plays a crucial role in a company's operating costs. Excessive inventory can increase costs and unnecessary waste can be reduced if managers plan for uncertain future demand and determine the most favorable decisions. Managers are demanding increasing accuracy in forecasting as technology advances. Most of the literature discusses forecasting results' inaccuracy by suspending the model and reloading the data for model retraining and correction, which is extensively employed but causes a bottleneck in practice since users do not have the sufficient ability to correct the model. This study proposes an error compensation mechanism and uses the individuals and moving-range (I-MR) control chart to evaluate the requirement for compensation to solve the current bottleneck using forecasting models. The approach is validated using the case companies' historical data, and the model is developed using a rolling long short-term memory (LSTM) to output the predicted values; then, five indicators are proposed for screening to determine the prediction statistics to be subsequently employed. Root mean squared error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) compare the LSTM, rolling LSTM combined index, and LSTM-autoregressive moving average (ARMA) models. The results demonstrate that the RMSE, MAPE, and MAE of LSTM-ARMA are smaller than those of the other two models, indicating that the error compensation mechanism that is proposed in this study can enhance the prediction's accuracy.
更多
查看译文
关键词
machine learning, error compensation, rolling forecast, sustainable manufacturing, case study
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要