Depositional Controls on Detrital Zircon Provenance: An Example From Upper Cretaceous Strata, Southern Patagonia

FRONTIERS IN EARTH SCIENCE(2022)

引用 2|浏览2
暂无评分
摘要
Understanding how depositional environments within a sedimentary system redistribute and sequester sediment is critical for interpreting basin-scale provenance trends. However, sedimentary source-to-sink models commonly examine temporal changes and do not consider how variation in sedimentation processes across a dispersal pathway may result in contrasting provenance signatures. In this paper, we demonstrate a down-paleoslope shift in detrital zircon provenance signatures correlated with shallow-marine lithofacies patterns from the Upper Cretaceous La Anita Formation and underlying continental slope lithofacies of the Alta Vista Formation (Magallanes-Austral Basin, southern Patagonia). New stratigraphic, sedimentologic, and lithofacies analysis results from the La Anita Formation suggest an upward shoaling succession, from a 1) storm-influenced shoreface, 2) fluvially dominated, wave-influenced delta, and a 3) high-energy, gravelly foreshore. Stratigraphic sections are paired with U-Pb detrital zircon sandstone samples (N = 20; n = 5,219), which provide both maximum depositional ages and provenance characteristics. While all samples contain abundant zircon derived from the Andean volcanic arc (ca. 145-75 Ma), the amount from both Jurassic distal volcanic massifs (ca. 188-162 Ma) and recycled orogenic sources exhumed during the advance of the Cretaceous fold-and-thrust belt (>200 Ma; 157-142 Ma) vary with changes in depositional environment. We argue that down-paleoslope, systematic enriching of local fold-and-thrust belt material within the La Anita Formation is reflective of progressive mixing of grains transported via shallow-marine processes, while distally enriched fluvio-deltaic transported zircons were sourced from large, regional catchments. This suggests that competition between transport processes across a shallow and marginal marine sequence of rocks affects the resulting provenance signatures recorded within a single stratigraphic succession. These data also detail the degree of sediment pathway connectivity between shallow-marine sources and deep-marine sinks. Detrital zircon results from muddy continental slope facies of the Alta Vista Formation are made up entirely locally derived material, while zircon results from deep-water, sand-rich channel facies of the Formation are indistinguishable from coeval fluvio-deltaic zircon signatures. This implies that continental shelf-to-slope connectivity in a sediment dispersal system, via submarine canyons or shelf-edge delta progradation, is necessary for detrital zircon distributions from the shallow-marine realm to propagate into the deeper marine.
更多
查看译文
关键词
detrital zircon, provenance, Patagonia, shallow marine, Cretaceous
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要