Prediction of Total Phosphorus Concentration in Macrophytic Lakes Using Chlorophyll-Sensitive Bands: A Case Study of Lake Baiyangdian

REMOTE SENSING(2022)

引用 2|浏览17
暂无评分
摘要
Total phosphorus (TP) is a significant indicator of water eutrophication. As a typical macrophytic lake, Lake Baiyangdian is of considerable importance to the North China Plain's ecosystem. However, the lake's eutrophication is severe, threatening the local ecological environment. The correlation between chlorophyll and TP provides a mechanism for TP prediction. In view of the absorption and reflection characteristics of the chlorophyll concentrations in inland water, we propose a method to predict TP concentration in a macrophytic lake with spectral characteristics dominated by chlorophyll. In this study, water spectra noise is removed by discrete wavelet transform (DWT), and chlorophyll-sensitive bands are selected by gray correlation analysis (GRA). To verify the effectiveness of the chlorophyll-sensitive bands for TP concentration prediction, three different machine learning (ML) algorithms were used to build prediction models, including partial least squares (PLS), random forest (RF) and adaptive boosting (AdaBoost). The results indicate that the PLS model performs well in terms of TP concentration prediction, with the least time consumption: the coefficient of determination (R-2) and root mean square error (RMSE) are 0.821 and 0.028 mg/L in the training dataset, and 0.741 and 0.029 mg/L in the testing dataset, respectively. Compared with the empirical model, the method proposed herein considers the correlation between chlorophyll and TP concentration, as well as a higher accuracy. The results indicate that chlorophyll-sensitive bands are effective for predicting TP concentration.
更多
查看译文
关键词
quantitative inversion, hyperspectral remote sensing, water quality parameters, total phosphorus, machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要