Projected Cost of Gallium Oxide Wafers from Edge-Defined Film-Fed Crystal Growth

Karen N. Heinselman, Drew Haven,Andriy Zakutayev,Samantha B. Reese

CRYSTAL GROWTH & DESIGN(2022)

引用 5|浏览1
暂无评分
摘要
Gallium oxide (Ga2O3 ) is an emerging ultra-wide bandgap semiconductor that has unique properties ideal for high-power, high-temperature, optoelectronic, and sensing applications and has piqued interest over the last decade. It has the potential to be technologically and economically superior to commercially available wide bandgap semiconductor materials, such as silicon carbide and gallium nitride, because its wider bandgap enables increased breakdown voltages and lower on-state resistances, and its ability to be grown from melt enable cost competitive economics. In this study, we present a techno-economic analysis that projects the cost of 6 " beta-Ga2O3 wafers fabricated from crystals grown via edge-defined film-fed growth (EFG). At a manufacturing volume of 5000 wafers per month, we predict a unit cost of $320 for a 6 & DPRIME; EFG grown beta-Ga2O3 epi-wafer. We determine that, when calculated using 2021 iridium crucible costs, EFG has a 2x cost advantage compared to previously reported epi-wafers grown via the Czochralski (CZ) method. We further identify key cost parameters for 6 "; beta-Ga2O3 epi-wafers and present cost-sensitivity analysis of their impact on the final cost.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要