Photoflash and laser ignition of Al/PVDF films and additively manufactured igniters for solid propellant

Combustion and Flame(2022)

引用 10|浏览3
暂无评分
摘要
Solid propellants are employed in a range of applications from the inflation of airbags to propulsion systems for rockets. The ignition of solid propellants must be carefully controlled and modified on a per-use basis due the specific ignition requirements of each application. Using tailored photoreactive materials as a source of ignition for solid propellants, or other energetic materials, could reduce the added weight and risk of traditional initiators and result in safer, more effective solid rocket motor ignition systems. This study demonstrates the tunability of the ignition delay and propagation properties of optically-sensitive, nearly full density reactive aluminum/polyvinylidene fluoride (Al/PVDF) films and additively manufactured igniters. A single printed layer of pure nano-aluminum (nAl) at ideal stoichiometry in PVDF was found to flash ignite, but frequently yielded delayed transitions in steady propagation from the igniter to the propellant. To improve the continuity and steadiness of the transition, fuel particle size, igniter thickness, and a combination of layers of nAl and micron-sized aluminum (μAl) were investigated. In printed igniters with layers of μAl, only a single layer of nAl was needed to flash ignite the material and propagate to the layers of μAl without delay. For igniters cast onto strands of ammonium perchlorate composite propellant, continuous ignition was achieved with a single layer of nAl printed atop a triple layer of μAl for the flash-activated igniters and a single layer of nAl printed atop a single and triple layer of μAl for laser-driven igniters. The nAl/PVDF layer enabled good flash or laser ignition sensitivity, while the μAl/PVDF produced more sustained heat transfer to produce a reliable ignition process.
更多
查看译文
关键词
Igniter,Photoreactive material,Solid propellant,3-D Printing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要