Nonlinear Optimization-Based Robust Control Approach for a Two-Stage Anaerobic Digestion Process

JOURNAL OF CHEMISTRY(2022)

引用 0|浏览5
暂无评分
摘要
A two-stage anaerobic digestion (AD) process has been applied to improve the efficiency of methane production from various organic materials. However, the performance of traditional process controllers may be limited by differences in the rate of biochemical reactions, process uncertainties, and the consequences of interconnection between the two bioreactors. In this work, a nonlinear optimization-based control strategy that applies an analytical model predictive control (AMPC) scheme with an adaptive optimal set-point is proposed for the control of the two-stage AD system. The objectives of the proposed control system are to stabilize the system under uncertain operating conditions and maximize biomethane production. The optimal set-points for the controller are adapted in real-time operation, and then the control system is performed to manipulate the controlled output to the optimal trajectories. Compensators and nonlinear state observers are applied to handle the process/model mismatch and estimate unmeasured variables. The proposed control system is applied to the process with disturbances, fluctuations of inlet stream concentrations, and changes in the bacterial growth rate, and the control performance is investigated. Simulation results show that the developed control scheme automatically adjusts the optimal set-points and provides adequate control actions to maintain the maximum rate of methane production. The results of this investigation demonstrate that the control strategy promotes different biochemical reactions, avoids the inhibition effect, and handles the mutual effects between acidogenic and methanogenic bioreactors for methane production effectively.
更多
查看译文
关键词
robust control approach,optimization-based,two-stage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要