Development of plasmonic thin-layer chromatography for size-selective and optical-property-dependent separation of quantum dots

NPG ASIA MATERIALS(2022)

引用 3|浏览7
暂无评分
摘要
Nano-objects, such as quantum dots (QDs), are essential units for the construction of functional materials and devices in current technologies. The establishment of a versatile scheme to sort desired components from a crude product is crucial for bringing out the full potential of the original materials. However, it is still challenging to separate QDs with the same composition on the basis of size and to sort QDs with the same size but different optical properties. Here, we demonstrate such sorting for the first time by combining plasmonic optical trapping with thin-layer chromatography (TLC), which is a widely used tool. LED photoexcitation of the localized surface plasmon resonance of Au nanoparticles immobilized on a TLC plate affected the distance QDs traveled depending on the wavelength and intensity of irradiated light, which led to clear separation according to the size and/or optical properties of the QDs. Since optical property-based separation cannot be achieved by conventional chromatography, in which the interactions between stationary phases of chromatographs and QDs are simply based on differences in the size or surface functionality of the QDs, the present strategy will be a key solution for the establishment of a versatile scheme for sorting nano-objects.
更多
查看译文
关键词
Photochemistry,Quantum dots,Materials Science,general,Biomaterials,Optical and Electronic Materials,Structural Materials,Energy Systems,Surface and Interface Science,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要