Machine learning-based model of surface tension of liquid metals: a step in designing multicomponent alloys for additive manufacturing

Journal of Materials Science(2022)

引用 1|浏览2
暂无评分
摘要
The surface tension (ST) of metallic alloys is a key property in many processing techniques. Notably, the ST value of liquid metals is crucial in additive manufacturing processes as it has a direct effect on the stability of the melt pool. Although several theoretical models have been proposed to describe the ST, mainly in binary systems, both experimental studies and existing theoretical models focus on simple systems. This study presents a machine learning model based on Gaussian process regression to predict the surface tension of multi-component metallic systems. The model is built and tested on available experimental data from the literature. It is shown that the model accurately predicts the ST value of binaries and ternaries with high precision, and that identifying certain trends in the ST values as a function of alloy composition is possible. The ability of the model to extrapolate to higher-order systems, especially novel concentrated alloys (high entropy alloys, HEA), is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要