PDMS membrane-based flexible bi-layer microfluidic device for blood oxygenation

JOURNAL OF MICROMECHANICS AND MICROENGINEERING(2022)

引用 5|浏览0
暂无评分
摘要
We report the fabrication and experimental study of a flexible bi-layer microfluidic device for blood oxygenation, mimicking the thin alveolar exchange barrier constituting a lung. A facile technique is employed to fabricate the device by sandwiching a thin polymeric membrane as the gas exchange layer between two flexible microchannels. A numerical model coupling the mass, momentum, and species transport equations, is used to simulate oxygen diffusion between the blood and oxygen channels across the gas exchange membrane. The oxygen saturation is experimentally measured at different locations in the blood channel along the flow direction and compared against the simulation results, which show a very good agreement. The effect of blood and oxygen flow rates, channel height, and membrane thickness on the variations in oxygen concentration in the blood and oxygen channels and the diffusion membrane are studied. The outcome of the present study may find relevance in the development of organ-on-chip devices for blood oxygenation.
更多
查看译文
关键词
PDMS, membrane-based, flexible, bi-layer, microfluidic, device, microfluidics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要