Single-wavelength transmission at 1.1-Tbit/s net data rate over a multi-modal free-space optical link using commercial devices

OPTICS LETTERS(2022)

引用 6|浏览7
暂无评分
摘要
We employ commercial mode-selective photonic lanterns to implement mode multiplexing and demultiplexing for high-capacity free-space optical communications. Moreover, we design a time-division-multiplexed frame structure to efficiently emulate multiple independent transmitters with channelized precoding using only one transmitter. To maximize the throughput of the system, we optimize the modes selected for carrying data, and apply adaptive loading to different channels. By leveraging mode- and polarization-division multiplexing, the free-space optical data link comprising multiple independent channels provides an aggregate net data rate of 1.1 Tbitls and net spectral efficiency of 28.35 bit/s/Hz. Different from many previous demonstrations based on delayed or partially delayed copies of identical data streams, to the best of our knowledge, ours is a record-high net data rate and net spectral efficiency achieved by a single-wavelength mode-division multiplexed free-space optical communication system with fully independent channels. Moreover, all key devices used in this work, including optical transponder, multiplexer, and demulti- plexer are commercially available. (C) 2022 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要