3D crack initiation and propagation applied to metal forming processes

International Journal of Material Forming(2022)

引用 6|浏览4
暂无评分
摘要
Numerical simulation of ductile fracture in the field of metal forming represents one of the most challenging tasks. Throughout the chain of manufacturing processes, the accurate prediction of the crack surfaces is essential for the quality of the final products. The application of a crack initiation and propagation algorithm known as CIPFAR is presented in order to model the complex ductile fracture processes. In addition, a phase field approach is coupled with a ductile damage criterion to simulate the transition from damage to fracture. The self-contact between crack faces is also modeled through the penalization method in order to prevent the penetration of crack faces. The presented algorithm serves as an efficient computational tool for the industrial purposes in terms of the robustness and quality of the obtained results. Comparisons are carried out with the classical element deletion method in order to show the ability of the new algorithm to tackle the issues of mesh dependency and volume loss.
更多
查看译文
关键词
3D fracture modeling, Metal forming, Phase field model, Ductile damage, CIPFAR algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要