Utilizing Gradient Porous Graphene Substrate as the Solid-Contact Layer To Enhance Wearable Electrochemical Sweat Sensor Sensitivity

NANO LETTERS(2022)

引用 14|浏览17
暂无评分
摘要
Wearable sweat monitoring represents an attractive opportunity for personalized healthcare and for evaluating sports performance. One of the limitations with such monitoring, however, is water layer formation upon cycling of ion-selective sensors, leading to degraded sensitivity and long-term instability. Our report is the first to use chemical vapor deposition grown, three-dimensional, graphene-based, gradient porous electrodes to minimize such water layer formation. The proposed design reduces the ion diffusion path within the polymeric ion-selective membrane and enhances the electroactive surface for highly sensitive, real-time detection of Na+ ions in human sweat with high selectivity. We obtained a 7-fold enhancement in electroactive surface against 2D electrodes (e.g., carbon, gold), yielding a sensitivity of 65.1 +/- 0.25 mV decade-1 (n = 3, RSD = 0.39%), the highest to date for wearable Na+ sweat sensors. The on-body sweat sensing performance is comparable to that of ICP-MS, suggesting its feasibility for health evaluation through sweat.
更多
查看译文
关键词
chemical vapor deposition,graphene,sweat sensing,wearable electronics,electrochemistry,ion-selective electrodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要