Using Compartments to Model Drug Delivery from Biodegradable Polymers

R Marriott, T I Spiridonova,S I Tverdokhlebov,Y G Anissimov

Journal of Pharmaceutical Sciences(2022)

引用 2|浏览3
暂无评分
摘要
Polymeric drug delivery systems can improve patient compliance, decrease toxicity and prolong therapeutic effects for a wide range of therapeutic treatments, by controlling drug release. Polymer delivery system development can be facilitated by mathematical models. We present here a new compartmental model that will be more familiar to pharmaceutical professionals and equally as effective as common diffusion equation-based models. The compartmental model considers both polymer degradation and drug diffusion to predict drug release. The model is adapted into three different geometries for different polymer delivery scenarios: membranes, fibres and particles. Model parameters are derived in terms of diffusion coefficients. Polymer-drug binding interactions and distributions of fibre/particle diameters are incorporated to the model. The model is validated by comparison to common diffusion equation-based solutions and fitting to experimental data. It is shown how the model for drug release can be incorporated into existing distribution models to predict plasma concentrations of an in vivo administration. A user-friendly Python implementation of the model is available on Github, at https://github.com/spirt-t/compartments_model
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要