Osmoregulation determines sperm cell geometry and integrity for double fertilization in flowering plants.

Molecular plant(2022)

引用 0|浏览29
暂无评分
摘要
Distinct from the motile flagellated sperm of animals and early land plants, the non-motile sperm cells of flowering plants are carried in the pollen grain to the female pistil. After pollination, a pair of sperm cells are delivered into the embryo sac by pollen tube growth and rupture. Unlike other walled plant cells with an equilibrium between internal turgor pressure and mechanical constraints of the cell walls, sperm cells wrapped inside the cytoplasm of a pollen vegetative cell have only thin and discontinuous cell walls. The sperm cells are uniquely ellipsoid in shape, although it is unclear how they maintain this shape within the pollen tubes and after release. In this study, we found that genetic disruption of three endomembrane-associated cation/H+ exchangers specifically causes sperm cells to become spheroidal in hydrated pollens of Arabidopsis. Moreover, the released mutant sperm cells are vulnerable and rupture before double fertilization, leading to failed seed set, which can be partially rescued by depletion of the sperm-expressed vacuolar water channel. These results suggest a critical role of cell-autonomous osmoregulation in adjusting the sperm cell shape for successful double fertilization in flowering plants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要