Composition and Performance of Autologous Engineered Skin Substitutes for Repair or Regeneration of Excised, Full-thickness Burns

Journal of burn care & research : official publication of the American Burn Association(2023)

引用 4|浏览5
暂无评分
摘要
Prompt and permanent wound closure after burn injuries remains a requirement for patient recovery. Historically, split-thickness skin autograft (STAG) has served as the prevailing standard of care for closure of extensive, deep burns. Because STAG availability may be insufficient in life-threatening burns, alternatives have been evaluated for safety and efficacy of wound closure. Since the 1970s, alternatives consisting of cultured epidermal keratinocytes, and/or acellular dermal substitutes were studied and translated into services and devices that facilitated wound closure, survival, and recovery after major burns. Cultured epithelial autografts (CEA) promoted epidermal closure of wounds but were not stable during long-term recovery. An acellular dermal substitute consisting of collagen and glycosaminoglycans (C-GAG) provided more uniform dermal repair, and reduced needs for epidermal harvesting but was subject to loss from microbial contamination. More recently, an autologous engineered skin substitute (ESS) has been reported and includes a C-GAG polymer populated with fibroblasts and keratinocytes which form basement membrane. ESS can be applied clinically over a vascularized dermal substitute and generates stable wound closure that is smooth, soft, and strong. Despite these advances, no current alternatives for permanent wound closure restore the anatomy and physiology of uninjured skin. Current alternatives act by mechanisms of wound healing, not by developmental biology by which skin forms in utero with pigment, hair, sweat and sebaceous glands, microvasculature, and nerve. Until full-thickness burns are restored with all of the normal structures and functions of uninjured skin, regenerative medicine of skin will remain an ambitious aspiration for future researchers and engineers to achieve.
更多
查看译文
关键词
biopolymers,burn wounds,cell therapies,regenerative medicine,skin,wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要